Copied to
clipboard

G = C62.94C23order 288 = 25·32

89th non-split extension by C62 of C23 acting via C23/C2=C22

metabelian, supersoluble, monomial

Aliases: C62.94C23, Dic32:19C2, C62:4(C2xC4), C23.19S32, C32:13(C4xD4), C6.162(S3xD4), C32:7D4:2C4, (C3xDic3):15D4, (C22xC6).61D6, C6.57(C4oD12), C6.D4:15S3, Dic3:8(C3:D4), (C2xDic3).78D6, (C22xDic3):4S3, C3:6(Dic3:4D4), C6.D12:15C2, C6.44(D4:2S3), C62.C22:16C2, C2.5(D6.3D6), C22:2(C6.D6), (C2xC62).13C22, (C6xDic3).71C22, (C2xC6):5(C4xS3), C3:4(C4xC3:D4), C6.35(S3xC2xC4), C2.5(S3xC3:D4), C3:Dic3:3(C2xC4), C22.46(C2xS32), (Dic3xC2xC6):14C2, C6.58(C2xC3:D4), (C3xC6).144(C2xD4), (C3xC6).71(C4oD4), (C2xC6.D6):13C2, (C3xC6).60(C22xC4), C2.12(C2xC6.D6), (C2xC32:7D4).5C2, (C3xC6.D4):17C2, (C2xC6).113(C22xS3), (C22xC3:S3).28C22, (C2xC3:Dic3).58C22, (C2xC3:S3):5(C2xC4), SmallGroup(288,600)

Series: Derived Chief Lower central Upper central

C1C3xC6 — C62.94C23
C1C3C32C3xC6C62C6xDic3Dic32 — C62.94C23
C32C3xC6 — C62.94C23
C1C22C23

Generators and relations for C62.94C23
 G = < a,b,c,d,e | a6=b6=e2=1, c2=b3, d2=a3, ab=ba, ac=ca, dad-1=a-1, ae=ea, cbc-1=b-1, bd=db, be=eb, cd=dc, ece=a3b3c, de=ed >

Subgroups: 802 in 215 conjugacy classes, 64 normal (44 characteristic)
C1, C2, C2, C3, C3, C4, C22, C22, C22, S3, C6, C6, C2xC4, D4, C23, C23, C32, Dic3, Dic3, C12, D6, C2xC6, C2xC6, C2xC6, C42, C22:C4, C4:C4, C22xC4, C2xD4, C3:S3, C3xC6, C3xC6, C4xS3, C2xDic3, C2xDic3, C3:D4, C2xC12, C22xS3, C22xC6, C22xC6, C4xD4, C3xDic3, C3xDic3, C3:Dic3, C2xC3:S3, C2xC3:S3, C62, C62, C62, C4xDic3, Dic3:C4, D6:C4, C6.D4, C3xC22:C4, S3xC2xC4, C22xDic3, C2xC3:D4, C22xC12, C6.D6, C6xDic3, C6xDic3, C2xC3:Dic3, C32:7D4, C22xC3:S3, C2xC62, Dic3:4D4, C4xC3:D4, Dic32, C6.D12, C62.C22, C3xC6.D4, C2xC6.D6, Dic3xC2xC6, C2xC32:7D4, C62.94C23
Quotients: C1, C2, C4, C22, S3, C2xC4, D4, C23, D6, C22xC4, C2xD4, C4oD4, C4xS3, C3:D4, C22xS3, C4xD4, S32, S3xC2xC4, C4oD12, S3xD4, D4:2S3, C2xC3:D4, C6.D6, C2xS32, Dic3:4D4, C4xC3:D4, D6.3D6, C2xC6.D6, S3xC3:D4, C62.94C23

Smallest permutation representation of C62.94C23
On 48 points
Generators in S48
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 18 5 16 3 14)(2 13 6 17 4 15)(7 47 9 43 11 45)(8 48 10 44 12 46)(19 28 23 26 21 30)(20 29 24 27 22 25)(31 42 33 38 35 40)(32 37 34 39 36 41)
(1 10 16 46)(2 11 17 47)(3 12 18 48)(4 7 13 43)(5 8 14 44)(6 9 15 45)(19 36 26 37)(20 31 27 38)(21 32 28 39)(22 33 29 40)(23 34 30 41)(24 35 25 42)
(1 31 4 34)(2 36 5 33)(3 35 6 32)(7 30 10 27)(8 29 11 26)(9 28 12 25)(13 41 16 38)(14 40 17 37)(15 39 18 42)(19 44 22 47)(20 43 23 46)(21 48 24 45)
(1 20)(2 21)(3 22)(4 23)(5 24)(6 19)(7 38)(8 39)(9 40)(10 41)(11 42)(12 37)(13 30)(14 25)(15 26)(16 27)(17 28)(18 29)(31 43)(32 44)(33 45)(34 46)(35 47)(36 48)

G:=sub<Sym(48)| (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,18,5,16,3,14)(2,13,6,17,4,15)(7,47,9,43,11,45)(8,48,10,44,12,46)(19,28,23,26,21,30)(20,29,24,27,22,25)(31,42,33,38,35,40)(32,37,34,39,36,41), (1,10,16,46)(2,11,17,47)(3,12,18,48)(4,7,13,43)(5,8,14,44)(6,9,15,45)(19,36,26,37)(20,31,27,38)(21,32,28,39)(22,33,29,40)(23,34,30,41)(24,35,25,42), (1,31,4,34)(2,36,5,33)(3,35,6,32)(7,30,10,27)(8,29,11,26)(9,28,12,25)(13,41,16,38)(14,40,17,37)(15,39,18,42)(19,44,22,47)(20,43,23,46)(21,48,24,45), (1,20)(2,21)(3,22)(4,23)(5,24)(6,19)(7,38)(8,39)(9,40)(10,41)(11,42)(12,37)(13,30)(14,25)(15,26)(16,27)(17,28)(18,29)(31,43)(32,44)(33,45)(34,46)(35,47)(36,48)>;

G:=Group( (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,18,5,16,3,14)(2,13,6,17,4,15)(7,47,9,43,11,45)(8,48,10,44,12,46)(19,28,23,26,21,30)(20,29,24,27,22,25)(31,42,33,38,35,40)(32,37,34,39,36,41), (1,10,16,46)(2,11,17,47)(3,12,18,48)(4,7,13,43)(5,8,14,44)(6,9,15,45)(19,36,26,37)(20,31,27,38)(21,32,28,39)(22,33,29,40)(23,34,30,41)(24,35,25,42), (1,31,4,34)(2,36,5,33)(3,35,6,32)(7,30,10,27)(8,29,11,26)(9,28,12,25)(13,41,16,38)(14,40,17,37)(15,39,18,42)(19,44,22,47)(20,43,23,46)(21,48,24,45), (1,20)(2,21)(3,22)(4,23)(5,24)(6,19)(7,38)(8,39)(9,40)(10,41)(11,42)(12,37)(13,30)(14,25)(15,26)(16,27)(17,28)(18,29)(31,43)(32,44)(33,45)(34,46)(35,47)(36,48) );

G=PermutationGroup([[(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,18,5,16,3,14),(2,13,6,17,4,15),(7,47,9,43,11,45),(8,48,10,44,12,46),(19,28,23,26,21,30),(20,29,24,27,22,25),(31,42,33,38,35,40),(32,37,34,39,36,41)], [(1,10,16,46),(2,11,17,47),(3,12,18,48),(4,7,13,43),(5,8,14,44),(6,9,15,45),(19,36,26,37),(20,31,27,38),(21,32,28,39),(22,33,29,40),(23,34,30,41),(24,35,25,42)], [(1,31,4,34),(2,36,5,33),(3,35,6,32),(7,30,10,27),(8,29,11,26),(9,28,12,25),(13,41,16,38),(14,40,17,37),(15,39,18,42),(19,44,22,47),(20,43,23,46),(21,48,24,45)], [(1,20),(2,21),(3,22),(4,23),(5,24),(6,19),(7,38),(8,39),(9,40),(10,41),(11,42),(12,37),(13,30),(14,25),(15,26),(16,27),(17,28),(18,29),(31,43),(32,44),(33,45),(34,46),(35,47),(36,48)]])

54 conjugacy classes

class 1 2A2B2C2D2E2F2G3A3B3C4A4B4C4D4E···4J4K4L6A···6J6K···6S12A···12H12I12J12K12L
order1222222233344444···4446···66···612···1212121212
size111122181822433336···618182···24···46···612121212

54 irreducible representations

dim1111111112222222224444444
type+++++++++++++++-++
imageC1C2C2C2C2C2C2C2C4S3S3D4D6D6C4oD4C3:D4C4xS3C4oD12S32S3xD4D4:2S3C6.D6C2xS32D6.3D6S3xC3:D4
kernelC62.94C23Dic32C6.D12C62.C22C3xC6.D4C2xC6.D6Dic3xC2xC6C2xC32:7D4C32:7D4C6.D4C22xDic3C3xDic3C2xDic3C22xC6C3xC6Dic3C2xC6C6C23C6C6C22C22C2C2
# reps1111111181124224841112122

Matrix representation of C62.94C23 in GL6(F13)

1200000
0120000
001000
000100
0000012
000011
,
1120000
100000
0012000
0001200
0000120
0000012
,
050000
500000
0071000
008600
000080
000008
,
500000
050000
0012000
0001200
000005
000050
,
100000
010000
006300
0010700
0000120
0000012

G:=sub<GL(6,GF(13))| [12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,12,1],[1,1,0,0,0,0,12,0,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[0,5,0,0,0,0,5,0,0,0,0,0,0,0,7,8,0,0,0,0,10,6,0,0,0,0,0,0,8,0,0,0,0,0,0,8],[5,0,0,0,0,0,0,5,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,0,5,0,0,0,0,5,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,6,10,0,0,0,0,3,7,0,0,0,0,0,0,12,0,0,0,0,0,0,12] >;

C62.94C23 in GAP, Magma, Sage, TeX

C_6^2._{94}C_2^3
% in TeX

G:=Group("C6^2.94C2^3");
// GroupNames label

G:=SmallGroup(288,600);
// by ID

G=gap.SmallGroup(288,600);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,112,64,590,1356,9414]);
// Polycyclic

G:=Group<a,b,c,d,e|a^6=b^6=e^2=1,c^2=b^3,d^2=a^3,a*b=b*a,a*c=c*a,d*a*d^-1=a^-1,a*e=e*a,c*b*c^-1=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e=a^3*b^3*c,d*e=e*d>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<